Ir al contenido principal

Entradas

Mostrando entradas de agosto, 2023

Uso de vectores en Física

  Invariancia y vectores Muchas leyes físicas tienen la propiedad llamada invariancia (que no varían) frente a transformaciones de coordenadas, concretamente presentan invariancia respecto a la traslación y a la rotación de los ejes coordenados. Por ejemplo, pensemos en una fuerza aplicada sobre un objeto de masa m = 1Kg tal que su magnitud es de 10N y su dirección forma un ángulo de 45 con el eje X, siendo su sentido positivo. Esa fuerza provocará una aceleración sobre el cuerpo, de magnitud dada por la ley de Newton a = F / m = 10N / 1Kg = 10 m/s² y dirección coincidente con la de la fuerza. Si nos preguntamos qué cambiará cuando movemos los ejes de coordenadas hacia la derecha, y los giramos 30 grados en sentido antihorario, la respuesta es que la aceleración será exactamente la misma pero el vector que la representa tendrá unas componentes distintas, relativas al nuevo eje de coordenadas. Fig. 1: La aceleración producida por la fuerza no depende de la traslación o rotación de los

Uso de vectores en Física

  Invariancia y vectores Muchas leyes físicas tienen la propiedad llamada invariancia (que no varían) frente a transformaciones de coordenadas, concretamente presentan invariancia respecto a la traslación y a la rotación de los ejes coordenados. Por ejemplo, pensemos en una fuerza aplicada sobre un objeto de masa m = 1Kg tal que su magnitud es de 10N y su dirección forma un ángulo de 45 con el eje X, siendo su sentido positivo. Esa fuerza provocará una aceleración sobre el cuerpo, de magnitud dada por la ley de Newton a = F / m = 10N / 1Kg = 10 m/s² y dirección coincidente con la de la fuerza. Si nos preguntamos qué cambiará cuando movemos los ejes de coordenadas hacia la derecha, y los giramos 30 grados en sentido antihorario, la respuesta es que la aceleración será exactamente la misma pero el vector que la representa tendrá unas componentes distintas, relativas al nuevo eje de coordenadas. Fig. 1: La aceleración producida por la fuerza no depende de la traslación o rotación de los

Mecánica de Newton

  La obra magna de Newton Isaac Newton definió en el siglo XVII unas leyes universales para el movimiento de los cuerpos sujetos a fuerzas (rama de la Física que se llama Dinámica ) en sus Philosophiae Naturalis Principia Mathematica , (Principios Matemáticos de la Filosofía de la Naturaleza) que describían de forma muy precisa y rigurosa el movimiento de una enorme diversidad de cuerpos, desde un grano de arena llevado por el viento hasta las órbitas de los planetas alrededor del Sol. No fue hasta el siglo XX con la teoría de la Relatividad que se vieron inexactitudes en la dinámica de Newton. Toda la dinámica de Newton se basa en las "fuerzas" (entendidas como interacciones entre cuerpos o entre campos y cuerpos, como por ejemplo el campo gravitatorio) y los "cuerpos" que se definen como objetos con un volumen y una masa. Tales leyes son tres: 1a ley, de la inercia : un cuerpo permanece o bien en estado de reposo o bien en movimiento rectilíneo a velocidad constan