Invariancia y vectores Muchas leyes físicas tienen la propiedad llamada invariancia (que no varían) frente a transformaciones de coordenadas, concretamente presentan invariancia respecto a la traslación y a la rotación de los ejes coordenados. Por ejemplo, pensemos en una fuerza aplicada sobre un objeto de masa m = 1Kg tal que su magnitud es de 10N y su dirección forma un ángulo de 45 con el eje X, siendo su sentido positivo. Esa fuerza provocará una aceleración sobre el cuerpo, de magnitud dada por la ley de Newton a = F / m = 10N / 1Kg = 10 m/s² y dirección coincidente con la de la fuerza. Si nos preguntamos qué cambiará cuando movemos los ejes de coordenadas hacia la derecha, y los giramos 30 grados en sentido antihorario, la respuesta es que la aceleración será exactamente la misma pero el vector que la representa tendrá unas componentes distintas, relativas al nuevo eje de coordenadas. Fig. 1: La aceleración producida por la fuerza no depende de la traslación o rotación de...
Cálculo en R -> Sucesiones Sucesiones de números reales Introducción Las sucesiones son una buena forma de introducir los conceptos de límites de funciones y de series, que son conceptos básicos en Cálculo. Empezamos con algunas definiciones. Definición 1 : Sucesión de números reales. Si tenemos una función f: N → R , donde N : conjunto de números naturales, R : conjunto de números reales, que a cada número natural n hace corresponder un número real x, diremos que tenemos definida una sucesión de números reales: 1 → x 1 2 → x 2 3 → x 3 ( . . .) n → x n La notación para la sucesión será: (x n ). La expresión que permite obtener el término enésimo de la sucesión se denomina término general de la sucesión . Ejemplos : El término general f(n) = x n = 1/n define la sucesión 1, 1/2, 1/3, ..., 1/n, ... El término general f(n) = x n = n define la sucesión 1, 2, 3, ..., n, ... Definición 2 : algunos tipos de sucesione...